Reinforcement Learning for Trading Systems and Portfolios

نویسندگان

  • John E. Moody
  • Matthew Saffell
چکیده

We propose to train trading systems by optimizing financial objective functions via reinforcement learning. The performance functions that we consider as value functions are profit or wealth, the Sharpe ratio and our recently proposed differential Sharpe ratio for online learning. In Moody & Wu (1997), we presented empirical results in controlled experiments that demonstrated the advantages of reinforcement learning relative to supervised learning. Here we extend our previous work to compare Q-Learning to a reinforcement learning technique based on real-time recurrent learning (RTRL) that maximizes immediate reward. Our simulation results include a spectacular demonstration of the presence of predictability in the monthly Standard and Poors 500 stock index for the 25 year period 1970 through 1994. Our reinforcement trader achieves a simulated out-of-sample profit of over 4000% for this period, compared to the return for a buy and hold strategy of about 1300% (with dividends reinvested). This superior result is achieved with substantially lower risk.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Functions and Reinforcement Learning for Trading Systems and Portfolios

We propose to train trading systems and portfolios by optimizing objective functions that directly measure trading and investment performance. Rather than basing a trading system on forecasts or training via a supervised learning algorithm using labelled trading data, we train our systems using recurrent reinforcement learning (RRL) algorithms. The performance functions that we consider for rei...

متن کامل

Learning to trade via direct reinforcement

We present methods for optimizing portfolios, asset allocations, and trading systems based on direct reinforcement (DR). In this approach, investment decision-making is viewed as a stochastic control problem, and strategies are discovered directly. We present an adaptive algorithm called recurrent reinforcement learning (RRL) for discovering investment policies. The need to build forecasting mo...

متن کامل

A Multi-agent Q-learning Framework for Optimizing Stock Trading Systems

This paper presents a reinforcement learning framework for stock trading systems. Trading system parameters are optimized by Qlearning algorithm and neural networks are adopted for value approximation. In this framework, cooperative multiple agents are used to efficiently integrate global trend prediction and local trading strategy for obtaining better trading performance. Agents communicate wi...

متن کامل

Reinforcement Learning for Trading

We propose to train trading systems by optimizing financial objective functions via reinforcement learning. The performance functions that we consider are profit or wealth, the Sharpe ratio and our recently proposed differential Sharpe ratio for online learning. In Moody & Wu (1997), we presented empirical results that demonstrate the advantages of reinforcement learning relative to supervised ...

متن کامل

Reinforcement Learning Based PID Control of Wind Energy Conversion Systems

In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998